module SigmoidPDE implicit none private public :: solve_sigmoid_pde contains ! solve_sigmoid_pde ! Approximate solution of a sigmoid-based PDE in a hyperdimensional space ! ! Parameters: ! u_in - real array of dimension n: input vector (state at t=0) ! u_out - real array of dimension n: output vector (state at T) ! dims - integer: dimensionality of the space ! steps - integer: number of time integration steps ! dt - real: time step size ! epsilon - real: diffusion coefficient ! ! Returns: ! u_out - approximated solution after integration subroutine solve_sigmoid_pde(u_in, u_out, dims, steps, dt, epsilon) real, intent(in) :: u_in(:) real, intent(out) :: u_out(:) integer, intent(in) :: dims, steps real, intent(in) :: dt, epsilon real, allocatable :: u(:), u_new(:) integer :: i, t ! Check input vector size if (size(u_in) /= dims) then print *, "Error: input vector size mismatch" stop end if allocate(u(dims), u_new(dims)) u = u_in do t = 1, steps ! Compute next state via explicit Euler with diffusion + sigmoid reaction do i = 1, dims u_new(i) = u(i) + dt * (epsilon * laplacian(u, i, dims) + dsigmoid(u(i))) end do u = u_new end do u_out = u deallocate(u, u_new) return end subroutine solve_sigmoid_pde ! sigmoid ! Standard logistic function pure function sigmoid(x) result(s) real, intent(in) :: x real :: s s = 1.0 / (1.0 + exp(-x)) end function sigmoid ! dsigmoid ! Derivative of the logistic function pure function dsigmoid(x) result(ds) real, intent(in) :: x real :: s real :: ds s = sigmoid(x) ds = s * (1.0 - s) end function dsigmoid ! laplacian ! Approximates second spatial derivative for 1D index within hyperdimensional grid ! Here simplified as finite-difference with periodic boundary pure function laplacian(u, idx, n) result(lap) real, intent(in) :: u(:) integer, intent(in) :: idx, n integer :: im1, ip1 real :: lap im1 = idx - 1 ip1 = idx + 1 if (im1 < 1) im1 = n if (ip1 > n) ip1 = 1 lap = u(im1) - 2.0 * u(idx) + u(ip1) end function laplacian end module SigmoidPDE program main use SigmoidPDE implicit none integer, parameter :: dims = 100 integer, parameter :: steps = 1000 real, parameter :: dt = 0.01 real, parameter :: epsilon = 0.1 real :: u0(dims), uT(dims) integer :: i ! Initialize input vector do i = 1, dims u0(i) = 0.1 * i end do ! Solve PDE call solve_sigmoid_pde(u0, uT, dims, steps, dt, epsilon) ! Output first 10 elements of solution print *, 'Solution (first 10):' do i = 1, 10 print '(F8.4)', uT(i) end do end program main